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ABSTRACT

The steady two-dimensional magnetohydrodynamic (MHD) boundary
layer flow and heat transfer of a Jeffrey fluid over a stretched sheet in the
presence of viscous dissipation is studied. The horizontal sheet is con-
sidered to have a non-isothermal temperature. The governing equations
that govern the fluid flow and heat transfer are in the form of partial
differential equations, which are then reduced to a set of non-linear ordi-
nary differential equations by a similarity transformation. The resulting
differential equations are solved numerically using an implicit finite dif-
ference scheme. The effects of Deborah number β, Eckert number Ec,
magnetic parameter M and Prandtl number Pr on the flow and heat
transfer characteristics are investigated.
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1. Introduction

The simplest rheological model of a fluid is a Newtonian fluid, which is
governed by the Navier-Stokes equation. In many fields, such as bioengineer-
ing, the food industry and drilling operations, the fluids with long chains of
molecules and which contain fine particles, exhibit non-Newtonian character-
istics. As such, the traditional Newtonian fluid is inadequate to describe the
dynamic flow of non-Newtonian fluids. There are few constitutive equations
for the non-Newtonian fluids available in the literature and in return, the dif-
ferential systems for such fluids are more complicated and much non-linear
than those of the viscous fluid. Owing to its application in the industry and
in the technological world, the non-linear fluid has attracted the attention of
researchers in the last few decades. One of the non-Newtonian fluids is the
Jeffrey model, which is a relatively simpler linear model using time derivatives
instead of convected derivatives, which are used by most fluid models. There
is little literature available for these types of fluids; some of them can be found
in (Hayat and Mustafa, 2010), (Hayat and Obaidat, 2012), (Nadeem and Fang,
2011), (Turkyilmazoglu and Pop, 2013) and (Qasim, 2013).

The pioneer work of Sakiadis (1961), who performed the study for the flow
induced by a moving plate, and Crane (1970), who examined the flow gener-
ated by a linearly stretching sheet, has opened doors for researchers to further
investigate the effects of stretching on the boundary layer flow, involving differ-
ent types of fluids and various aspects of boundaries and flow conditions. The
study of flow over a stretching sheet has gained considerable attention due to
its industrial applications. For instance, during the process of extrusion of a
polymer sheet, from a die or in the drawing of plastic films, the melt issues from
a slit and is subsequently stretched to achieve the desired thickness. However,
the quality of the final product of desired characteristics does not only depend
on the rate of stretching but also on the rate of cooling. As such, a combination
of both the flow caused by a stretching surface and heat transfer is of great im-
portance in many manufacturing processes such as in the extrusion process, in
glass blowing, hot rolling, the production of papers, the manufacture of plastic
and rubber sheets, in crystal growing, in continuous cooling, in fibre spinning,
etc.

The effects of such flows, along with electronic-magnetic fields, i.e. magne-
tohydrodynamic (MHD) flows, are relevant to many practical applications and
play a major role industrially. The magnetic field has been widely used in the
process of cooling continuous strips and filaments drawn through a quiescent
fluid, the purification of molten metals and non-metallic inclusions, and has
applications in different areas of research such as petroleum production and
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metallurgical processes. To the authors’ knowledge, the MHD flow of non-
Newtonian fluids was first studied by Sarpakaya (1961). Since then, there is an
abundance of literature that discusses the MHD flows of non-Newtonian fluids
over stretching sheet, and some of them can be found in Andersson (1992), Liao
(2003), Eldabe and N.S. (2005), Sajid and Asghar (2007), Hayat and Qasim
(201), Abel and Nandeppanavar (2008), Abel and Shinde (2012), Ashokkunar
and Pravin (2013) and Aly and Vajravelu (2014).

Viscous dissipation changes the temperature distribution by playing the role
of an energy source, which leads to affect heat transfer rates. The merit of the
effect of viscous dissipation depends on whether the sheet is being cooled or
heated (Abel and Ravikumara (2011)). As such, the viscous dissipation term
has to be incorporated in the energy equation. Research in this field has been
conducted by many investigators. Some of the recent ones are Abel and Raviku-
mara (2011) who investigated the effects of buoyancy, and viscous and Joule
dissipation over a nonlinear vertical stretching porous sheet with partial slip in
a Newtonian fluid. Jat and Chand (2013) studied the steady two-dimensional
laminar flow of a viscous, incompressible electrically conducting fluid over an
exponentially stretching sheet in the presence of a uniform transverse mag-
netic field with viscous dissipation and radiative heat flux. Ahmad and Nazar
(2013) investigated the flow and heat transfer of a micropolar fluid past a non-
linearly stretching plate with viscous dissipation effect; and Pal and Vajravelu
(2014) studied the mixed convection stagnation point flow of nanofluids over a
stretching/shrinking surface in the presence of thermal radiation and viscous
dissipation, to name a few.

In all these cases, a study of flow field and heat transfer can be signifi-
cant because the quality of the final product depends to a large extent on the
skin friction coefficient and the surface heat transfer rate (Bird and Hassager
(1987)). Hence, motivated by the above works, the aim of this paper is to
extend the above investigations, by which the velocity and heat transfer are
calculated for the MHD flow of a Jeffrey fluid using a numerical approach.

2. Main Sections

Consider a steady, two-dimensional laminar boundary layer flow of an in-
compressible, electrically conducting Jeffrey fluid in the presence of a transverse
magnetic field. The flow is generated by stretching the sheet away from the
leading edge with linear velocity uw = ax where a is a positive constant. The
plate is considered to have a temperature distribution in the quadratic form
Tw = T∞+A(x/L)2 at y = 0. The x-axis runs along the stretching sheet in the

Malaysian Journal of Mathematical Sciences 313



i
i

i
i

i
i

i
i

Ahmad, K., Ishak, A.

direction of motion, while the y-axis is taken normal to the sheet. A uniform
magnetic field of strength Bo is applied in the positive direction of the y-axis.
The magnetic Reynolds number is considered to be small so that the induced
magnetic field is negligible. Under these assumptions, the governing boundary
layer equations of the motion are

3. Equations

Mathematical equations should be numbered consecutively in the manuscript

∂u

∂x
+
∂v

∂y
= 0 (1)
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∂u
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(
∂u
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+
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ou
2

ρcp
(3)

subject to the boundary conditions

u = uw, v = 0 T = Twat y = 0

u→ 0,
∂u

∂y
→ 0, T → T∞ as y →∞ (4)

where u and v are the velocity components in the x and y directions, respectively.ν
is the kinematic viscosity, λ1 is the ratio of the relaxation and retardation times,
λ2 is the relaxation time, k is the thermal conductivity , µ is the dynamic
viscosity, cp is the specific heat at constant pressure and T is the fluid tem-
perature. ρ, σ and Bo are the fluid density, electric conductivity and magnetic
field, respectively. The second term on the right side of Eq. (3) is the viscous
dissipation term which is always positive and represents a source of heat due
to friction between the fluid particles.
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Eqs. (1)-(4) obey the following similarity transformation

η =

√
a

ν
y, ψ = −

√
aνxf(η), θ =

T − T∞
Tw − T∞

(5)

where f is the dimensionless stream function, θ is the dimensionless temper-
ature and ψ is the stream function defined as u = ∂ψ/∂y and v = −∂ψ/∂x.
Thus, we have

u = axf ′(η), v = −
√
aν f(η) (6)

where prime denotes differentiation with respect to η . Invoking (5) and (6),
Eq. (1) is automatically satisfied and Eqs. (2) and (3) are reduced to

f ′′′ − (1 + λ1)
[
(f ′)

2 − ff ′′
]
+ β

[
(f ′′)

2 − ff iv
]
− (1 + λ1)Mf ′ = 0 (7)

θ′′ + Pr (fθ′ − 2f ′θ) + PrEc (f ′′)
2
+MPrEc (f ′)

2
= 0 (8)

and the transformed boundary conditions can be written as

f(0) = 0, f ′(0) = 1, θ(0) = 1 at η = 0

f ′(η)→ 0, f ′′(η)→ 0, θ(η)→ 0 as η →∞ (9)

where β = aλ2 is the Deborah number,Pr = µcp/k is the Prandtl number,
Ec = a2l2/Acp is the Eckert number and M = σB2

o/ρa is the MHD parameter.

The physical quantities of interest are the skin friction coefficient Cf and
the local Nusselt number Nux, which are defined as

Cf =
τw

ρu2w/2
, Nux =

xqw
k(T − T∞)

, (10)

where τw is wall shear stress and qw is the heat flux from the surface, which
are given by
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τw = µ
∂u

∂y
, qw = −k∂T

∂y
(11)

with µ and k being the dynamic viscosity and the thermal conductivity. Sub-
stituting (5) and (6) into (10), the scaled skin friction coefficient and the local
Nusselt number are reduced to

1

2
CfRe

1/2
x = f ′′(0), NuxRe

−1/2
x = −θ′(0) (12)

where Rex = uwx/ν is the local Reynolds number.

4. Results and Discussion

Eqs. (7) - (8), subject to the boundary conditions (9), have been solved
numerically using a finite-difference method, namely the Keller-box method for
some arbitrary values of the magnetic parameterM , the Jeffrey fluid parameter
β , the Prandtl number Pr, and the Eckert number Ec with the ratio of the
relaxation and retardation times λ1 held fixed (=0).

Fig. 1 displays the variations of the local Nusselt number −θ′(0) with the
Eckert number Ec when Pr = 0.7 and M= 0.2 for β = 0, 0.5 and 1.5, respec-
tively. It is found that the local Nusselt number increases with the increase
of Deborah number β and the local heat transfer is found to be higher for the
low value of Ec. From our computation, we found that the values of the skin
friction when M = 0.2 and β = 0, 0.5 and 1.5 for any values of Pr and Ec are
-1.0955, -0.8945 and -0.6930, respectively. This indicates that the values of Ec
and Pr have no significant impact on the skin friction coefficient.

The variations of the skin friction coefficient f ′′(0) and the local Nusselt
number −θ′(0) with the Deborah number β when Pr = 0.7 and Ec = 0.3 are
plotted in Figs. 2 and 3, respectively. Both of the figures suggest that as β
increases, the skin friction and the heat transfer rate at the surface increases as
well. It should be pointed out also, the effect of the magnetic parameter M is
found to decrease both the skin friction coefficient and the local Nusselt number.

316 Malaysian Journal of Mathematical Sciences



i
i

i
i

i
i

i
i

MHD Flow and Heat Transfer of A Jeffrey Fluid Over A Stretching Sheet With Viscous
Dissipation

Figure 1: Variations of the local Nusselt number −θ′(0) with the Eckert number Ec when Pr =
0.7 and M = 0.2 for various values of Deborah number β

Figure 2: Variations of the skin friction coefficient f ′′(0) with Deborah number β when Pr = 0.7
and Ec = 0.3 for various values of magnetic parameter M .
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Figure 3: Variations of the local Nusselt number −θ′(0) with the Deborah number β when Pr =
0.7 and Ec = 0.3 for various values of magnetic parameter M .

Figs. 4 and 5 respectively show the influence of the Deborah number β on
the velocity and temperature profiles when Pr = 0.7 and Ec = 0.3 for M = 0,
1. It is found that the velocity and the boundary layer thickness are increasing
function of the Deborah number β. However, the temperature distribution
shows an opposite trend as displayed in Fig. 5. The effect of the magnetic
parameter M can also be seen from these two figures and it is found that the
presence ofM decreases the velocity and the boundary layer thickness but gives
slight increment in the temperature inside the boundary layer. This is because
the magnetic field presents as a damping effect, which retards the flow field
by creating a drag force known as Lorentz force and hence opposes the fluid
motion and reduces the velocity of the flow. In consequence of the retardation
of the fluid flow and the resistance offered to the flow, it is expected to have
an increment in the temperature as shown in Fig. 5.

Fig. 6 depicts the velocity distribution when M = 0.5 for the viscous fluid
(β = 0) and the Jeffrey fluid (β = 1), respectively. The distribution of the
velocity is observed to be identical for any values of Pr and Ec when the
Deborah number β is fixed. This is expected as Pr and Ec only affect the
thermal field, hence there is no significant impact on the flow field. As such,
the thermal field is more pronounced compared to the velocity field as plotted
in Fig. 7 and 8.
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Figure 4: Velocity distribution for various values of Deborah number β whenPr = 0.7, Ec = 0.3
and M = 0, 1.
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Figure 5: Temperature distribution for various values of Deborah number β when Pr = 0.7, Ec =
0.3 and, M = 0, 1.

The effect of Pr on the temperature distribution can be seen in Fig. 7,
which demonstrates the variation of the temperature profiles for several values
of Pr when M = 0.5 and Ec = 1 for the viscous and Jeffrey fluids, respec-
tively. From the plot, it is evident that the temperature is at a fixed η and the
thermal boundary layer thickness decreases rapidly as the boundary layer edge
is reached faster with increasing value of Pr. Furthermore, fluid with a high
Prandtl number decreases the thermal conductivities, which in turn retards the
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diffusion of the heat, and in consequence increases the temperature gradient
at the surface. Also, it should be noted that the introduction of the material
parameter/Deborah number β to the fluid is to reduce the temperature at the
surface.
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 M = 0.5

Figure 6: Velocity distribution when M = 0.5 and β = 0, 1.
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Figure 7: Temperature distribution for various values of Prandtl number Pr when M = 0.5, Ec =
1 and β = 0, 1.

The impact of the Eckert number on the temperature distributions of the
viscous fluid (β=0) and the Jeffrey fluid (β=1) are shown in Fig. 8 with Pr
= 0.7 and M = 0.5. It is observed that the temperature distribution increases
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with the increase of the Eckert number Ec. This is because the presence of
viscous dissipation in the energy equation acts as an internal heat source that
increase the thermal energy and thus heat the regime. For large values of Ec,
it is evident that near the surface, the temperature slightly overshoots and
adjourns marginally further into the boundary layer.

0 1 2 3 4 5 6 7 8
0
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0.4
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0.8

1

1.2

η
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η)

Ec = 0.7, 1.7, 2.7

Pr = 0.7, M = 0.5

β = 0
β = 1

Figure 8: Temperature distribution for various values of Ec when Pr = 0.7, M = 0.5 and β = 0,
1.

For Figs. 4-8, it can be observed that the fluid velocity and temperature
are high at the moving surface but then subside monotonously to zero as it
achieves a certain distance far away from the plate surface, thus satisfying the
boundary conditions (9).
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